Vector Bundles and Gromov–hausdorff Distance
نویسنده
چکیده
We show how to make precise the vague idea that for compact metric spaces that are close together for Gromov– Hausdorff distance, suitable vector bundles on one metric space will have counterpart vector bundles on the other. Our approach employs the Lipschitz constants of projection-valued functions that determine vector bundles. We develop some computational techniques, and we illustrate our ideas with simple specific examples involving vector bundles on the circle, the two-torus, the two-sphere, and finite metric spaces. Our topic is motivated by statements concerning “monopole bundles” over matrix algebras in the literature of theoretical high-energy physics.
منابع مشابه
Leibniz Seminorms for “matrix Algebras Converge to the Sphere”
In an earlier paper of mine relating vector bundles and Gromov–Hausdorff distance for ordinary compact metric spaces, it was crucial that the Lipschitz seminorms from the metrics satisfy a strong Leibniz property. In the present paper, for the now noncommutative situation of matrix algebras converging to the sphere (or to other spaces) for quantum Gromov–Hausdorff distance, we show how to const...
متن کاملQuantized Gromov-hausdorff Distance
A quantized metric space is a matrix order unit space equipped with an operator space version of Rieffel’s Lip-norm. We develop for quantized metric spaces an operator space version of quantum Gromov-Hausdorff distance. We show that two quantized metric spaces are completely isometric if and only if their quantized Gromov-Hausdorff distance is zero. We establish a completeness theorem. As appli...
متن کاملSome Properties of Gromov-Hausdorff Distances
The Gromov–Hausdorff distance between metric spaces appears to be a useful tool for modeling some object matching procedures. Since its conception it has been mainly used by pure mathematicians who are interested in the topology generated by this distance, and quantitative consequences of the definition are not very common. As a result, only few lower bounds for the distance are known, and the ...
متن کاملC∗-algebraic Quantum Gromov-hausdorff Distance
We introduce a new quantum Gromov-Hausdorff distance between C∗-algebraic compact quantum metric spaces. Because it is able to distinguish algebraic structures, this new distance fixes a weakness of Rieffel’s quantum distance. We show that this new quantum distance has properties analogous to the basic properties of the classical Gromov-Hausdorff distance, and we give criteria for when a parame...
متن کاملThe Gromov-Hausdorff distance: a brief tutorial on some of its quantitative aspects
We recall the construction of the Gromov-Hausdorff distance. We concentrate on quantitative aspects of the definition and on quantitative properties of the distance .
متن کامل